The Path to
High-Quallq Soﬂware

| |
Klaus Iglberger, Closing KéS/note ‘k\eetmg C|++ 202?.[
"L klaus. 1glt]ergercﬂgn‘l}>[delr |. |
» | :
Y- -~ Sl] |

mailto:klaus.iglberger@gmx.de

C++ Trainer/Consultant

Author of the DI \ze C++ math library
(Co-)Organizer of the Munich C++ user group

Chair of the CppCon Back-to-Basics track

Email: klaus.iglberger@gmx.de

Klaus Iglberger

What is
“high-quality software™?

High-quality software is

easy to change, easy to
extend, and easy to test.

(and of course also fast)

The truth in our industry:

Software must be
adaptable to
frequent changes

The truth in our industry:

Software must be
adaptable to
frequent changes

What is the core problem of adaptable software
and software development in general?

Dependencies

”"Dependency is the key problem in software
development at all scales.”

(Kent Beck, TDD by Example)

The C++ Conference

Breaking Dependencies: Design Patterns:

: : Type Erasure - A Design Analysis Facts and Misconceptions
Breaking Dependencies: L Y p

The SOLID Principles
Klaus Iglberger

KLAUS IGLBERGER KLAUS IGLBERGER

20 | AN 20 | AN 20 | A
70 AN 77 AN _’ ' Cppcon 27 AN

September 13-18 October 24-29 October 24-29

o @8 =0 i > P © 001/1:0133 0O @ £ [3¢ 0 @ £ () 3:

=

Breaking Dependencies Breaking Dependencies:
The Visitor Design Pattern Type Erasure - The Implementation Details

KLAUS IGLBERGER KLAUS IGLBERGER

The common theme:

Breaking
Dependencies

The common theme:

Software
Design

My Definition of Software Design

Software Design is the art of managing

interdependencies between software
components. It aims at minimizing
(technical) dependencies

and introduces the necessary
abstractions and compromises.

(Klaus Iglberger, C++ Software Design)

12

My Definition of Software Design

Software Design is the art of managing

dependencies and abstractions.

13

Ok, but what’s
the big deal?

Speed of Development in a Typical Software Project

Speed of
Development

- Quality of code starts to degrade:
° /— ¢ Things are getting more difficult to change
¢ New features become more difficult to add

¢ Less time is left to care about the code

More developers are hired:
Quality drops further: ‘ ¢ The new developers need to be trained

> More and more bugs creep in ¢ Less time for the old developers
< More time is wasted in debugging
¢ Even less time is left to care about the code

A
Point of maximum frustration —

¢ |ts difficult to meet deadlines

¢ Frustration is high; key developers leave the team/company
Time

15

Speed of Development in a Typical Software Project

Speed of
Development

1009% Quality of code starts to degrade:

> Things are getting more difficult to change
- > New features become more difficult to add
> Less time is left to care about the code

Quality Matters!

More developers are hired:
Quality drops further: - The new developers need to be trained

> More and more bugs creep in - Less time for the old developers

© More time is wasted in debugging
- Even less time is left to care about the code

Point of maximum frustration »

: |ts difficult to meet deadlines

: Frustration is high; key developers leave the team/company
Time

16

Speed of Development in a Typical Software Project

Quality Matters!

¢ The implementation details matter ...
¢ ... but the structure/organization of code (the design) matters even more!

17

The Role of Architecture/Design

“The design plays a much more central role in the
success of a project than any feature could ever do.

Good software is not primarily about the proper use
of any feature; rather, it is about solid architecture
and design.

Good software design can tolerate some bad
implementation decisions, but bad software design
cannot be saved by the heroic use of features (old or
new) alone.”

(Klaus Iglberger, C++ Software Design)

18

The Reality of Architecture/Design

“But the architecture this [...] code
hung from was often an afterthought.
They were so focused on features that

organization went overlooked.

(Robert Nystrom, Game Programming Patterns)

19

You’ve ignored software structure and organization?
No problem, you can always ...

rewrite the code!

20

The Real Problem

They [made] the single worst
strategic mistake that any software
company can make: They decided to

rewrite the code from scratch.

(Joel Spolsky, joelonsoftware.com)

21

http://joelonsoftware.com

Software design
matters, from the very
beginning, and it is a

continuous effort!

FE T L

&~ > This is a messy child’s room

23

This is an angry child not interested /F\

in cleaning up its room!

24

Software design
matters, from the
very beginning,
and it is a
continuous
effort!

25

Keep your code
easy to change,
easy to extend

and easy to test.

26

So how can we keep the
software easy to change,
extend and test?

The Solution:

Design Patterns

The Solution: Design Patterns

@

Design Patterns

Elements of Reusable
The Gang-of-Four (GoF) book from 1994:

Origin of 23 of the most commonly used
design patterns.

Erich Gamma
Richard Helm

This book collects design patterns and ...

¢ ... gives them a name, ...
¢ ... describes their intent and ...
¢ ... shows how they help to manage dependencies.

N/
o/
T2
P
j—
'

-
<
=,

-~
e,
D
f‘\‘
p—
1
W
o
—
—
p-=
P
~
~
<
—
B,
—
—_
f\’

S3143S

29

The Reality of Design Patterns

“Design patterns are everywhere.”
(Klaus Iglberger, C++ Software Design)

30

Unfortunately we don’t talk enough
about software design and design

patterns @

Meeting C++ 2022 in Numbers

Meeting C++
2022

Total number of talks: ~4/

Number of talks on C++ Features/Standards: ~16 (34%)

Number of talks on software design: ~4 (8%)

Why do we not

talk about
software design?

Reason 1;:

We already know everything about
design patterns.

Reason 2:

Design patterns are for OOP,
but OOP is not in favor anymore!

Reason 3:

Design patterns are simple!

34

Reason 1:

We already know everything about
design patterns.

(After all, the first have been introduced in 1994!)

The Classic Factory Method Designh Pattern

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gamme
Richard Helmr
Ralph J nso
John Vi

/, / — -
// / y-.

P
-
p—
o
~
S
'
=
<
N
<
O
70
s
-
U
¥
—
-/
}
"
=
-~
o
—
o
p
—
h“
Vo
=z
W

36

The Classic Factory Method Design Pattern

“Define an interface'for creating an object, but

let subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to
subclasses.”

(The Gang of Four, Design Patterns. - Elements of Reusable Object-
Oriented Software)

37

The Classic Factory Method Design Pattern

“Define an intérface'for creating an object, but

let subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to
subclasses.”

(The Gang of Four, Design Patterns. - Elements of Reusable Object-
Oriented Software)

38

The Classic Factory Method Design Pattern

Factory Method is often used as synonym
for “creating something”.

Consequently, std: :make unique() is
often referred to as a Factory Method.

The Classic Factory Method Design Pattern

“Define an interface'for creating an object, but

let subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to
subclasses.”

(The Gang of Four, Design Patterns. - Elements of Reusable Object-
Oriented Software)

40

The Classic Factory Method Design Pattern

virtual factoryMethod() = 0 Or======sss==- product = factoryMethod();

ConcreteCreator

virtual factoryMethod() Qe==}========- return new ConcreteProduct();

ConcreteProduct

41

The Classic Factory Method Design Pattern

This 1s an architecture!

virtual factoryMethod() = 0 Op===r==r==x=- product = factoryMethod();
R
/\
High-level
(stable)
Architectural
Boundary
Low-level Inversion of
(malleable, volatile) dependencies
ConcreteProduct [

virtual factoryMethod() Q-==}======="- return new ConcreteProduct();

42

Is std::make_unique() a Factory Method?

std: :make_ unique() does not allow customization.
It does not manage the relationship between entities.
It does not invert dependencies.
It does not help to break dependencies.

And it is not a “method”, but only a function.

43

From the Index of the Current Draft of the C++ Standard
(November 11th 2022)

member of the current instantiation, see current instantiation, member of the
member pointer to, see pointer to member
member subobject, [intro.object]
member-declaration, [class.mem.general], [gram.class]
member-declarator, [class.mem.general], [gram.class]
member-declarator-list, [class.mem.general], [gram.class]
member-specification, [class.mem.general], [gram.class]
memory location, [intro.memory]
memory management, see new, see delete
memory model, [intro.memory]
message
N‘?r::tti:z;f,) rm diagnostic, [defns.diagnostic], [intro.compliance.general]

model

concept, [res.on.requirements]
modifiable, [basic.lval]
modification order, [intro.races]
module, [module.unit]

exported, [module.import]

global, [module.unit]

named, [module.unit]

reserved name of, [module.unit]

”A virtual function is sometimes called a method.”

(Bjarne Stroustrup, The C++ Programming
Language, 4th Edition)

45

”A virtual function is sometimes called a method.”

(Bjarne Stroustrup, The C++ Programming
Language, 4th Edition)

46

s std::make_unique() a Factory Method?

std: :make unique() is not an
example for the Factory Method design
pattern ...

... but 1t is an example for a
factory function.

The Power of Terminology

Please use the term factory function as
a synonym for “creating something”.

Please use the term Factory Method as
synonym for a customizable factory function.

Reason 1:

We already know everything about
design patterns.

Realization 1:

We already know a lot about
design patterns. But we definitely

need to talk more about them.

Reason 2:

Design patterns are for OOP,
put OOP is not in favor anymore!

The Current Attitude towards OOP

GoingNative 2013 Inheritance Is The Base Class of Evil

A

Inheritance Is The Base Class of Evil

The Current Attitude towards OOP

Can a browser engine be successful with

data-oriented design?

CppCon 2018 | @stoyannk

> Pl o) 2:49/1:0045

OOP is dead, long live
Data-oriented design

53

The Common Attitude Toward Design Patterns

bﬁlglberger -%as_ign EENCEINE -éts and Misconceptions g «
eeting C++ online

Design Patterns

Facts and Misconceptions

Klaus Iglberger, Meeting C++ Online, 2021
klaus.iglberger@gmx.de

» » o l2aus lalberaer - Desian Patterns - Facts and Misconceptiong o «= o :

B e 1 month ago
Really? Design Patterns in 20217

5 GH REPLY

54

The Reality of Design Patterns

“Design patterns are everywhere.”
(Klaus Iglberger, C++ Software Design)

55

The Classic Strategy Design Pattern

Design Patterns

Elements of Reusable
Object-Oriented, Software

Erich Gamme
Richard Helnr
Ralph J NS
John V.

p==
-
o’/
N
> £,
-
'
-
<
Vo'
<
O
L
=
p—
W
—
—
>
"
~
—
P
—
B,
—
—
7
A‘

S31A3S

56

The Classic Strategy Design Pattern

“Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy
lets the algorithm vary independently from
clients that use it.”

(The Gang of Four, Design Patterns. - Elements of Reusable Object-
Oriented Software)

57

The Classic Strategy Design Pattern

Not inheritance, but
This represents any concrete class, delegation is the key!

i.e. a class that needs to extract
implementation details \
strategy
o
)

High-level A

(stable)

Strategy

Low-level
(malleable, volatile)

ConcreteStrategyA

New “responsibilities” can

be added without modifying
any existing code; this fulfills
the Open-Closed Principle (OCP)

virtual algorithm()

virtual algorithm() =0

The aspect that changes is
extracted and isolated; this
fulfills the Single-Responsibility
Principle (SRP)

Architectural
Boundary

ConcreteStrategyB

virtual algorithm()

58

The classic OO Strategy is often considered
to be THE ONE implementation...

... hothing could be farther from the truth!

The C++ Standard Library itself uses hundreds of Strategies ...

59

Examples from the Standard Library

template<

class T,

class Deleter = std::default delete<T>
> class unique ptr;

60

Examples from the Standard Library

template<

class T,

class Deleter = std::default_delete<T> < Strategy
> class unique ptr;

61

Examples from the Standard Library

template<

class T,

class Allocator = std::allocator<T> <« Strategy
> class vector;

62

Examples from the

template<
class Key,

Standard Library

class Hash = std::hash<Key>,
class KeykEqual = std::equal_to<Key>, :>

class Allocator =
> class unordered set;

std: :allocator<Key> &

Strategy

63

Examples from the Standard Library

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :accumulate(begin(numbers), end(numbers), int{0}
, std::plus<>{});

™~

Strategy

64

The Reality of Design Patterns

In particular Strategy
is everywhere!

/

“Design patterns are everywhere.”
(Klaus Iglberger, C++ Software Design)

65

Reason 2:

Design patterns are for OOP,
put OOP is not in favor anymore!

Realization 2:

Design patterns are not only
for OOP, but come in many
different forms. We really

should talk more about them!

Reason 3:

Design patterns are simple!

The Toy Problem: Drawing Shapes

class Shape

{

public:
Shape() = default;
virtual ~Shape() = default;
virtual void draw(Screen&, /*...*/) const = 0;
virtual void serialize(ByteStreamé&, /*...%*/) const =
//

s

class Circle : public Shape

{

public:
explicit Circle(double rad)

: radius{ rad }
, // ... Remaining data members
{}
double getRadius() const noexcept;
// ... getCenter(), getRotation(),
void draw(Screen&, /*...*/) const override;
void serialize(ByteStream&, /*...%*/) const override;
//
private:

double radius;
// ... Remaining data members

9;

69

The Toy Problem: Drawing Shapes

class Shape

{

public:
Shape() = default;
virtual ~Shape() = default;
virtual void draw(Screen&, /*...%*/) const = 0;
virtual void serialize(ByteStream&, /*...%*/) const =
//

s

class Circle : public Shape

{

public:
explicit Circle(double rad)

: radius{ rad }
, // ... Remaining data members
{}
double getRadius() const noexcept;
// ... getCenter(), getRotation(),
void draw(Screen&, /*...*/) const override;
void serialize(ByteStream&, /*...%*/) const override;
//
private:

double radius;
// ... Remaining data members

9;

70

The Toy Problem: Drawing Shapes

virtual void draw(Screen&, /*...*/) const = 0;
virtual void serialize(ByteStreamé&, /*...%*/) const =

//
}s

class Circle : public Shape
{
public:
explicit Circle(double rad)
: radius{ rad }
, // ... Remaining data members

1}

double getRadius() const noexcept;
// ... getCenter(), getRotation(),

void draw(Screen&, /*...*/) const override;
void serialize(ByteStream&, /*...%*/) const override;

//

private:
double radius;
// ... Remaining data members

};

class Square : public Shape
{
public:
explicit Square(double s)
side{ s }
// Remainina data members

9;

71

A Naive Object-Oriented Solution

class Shape

{

public:
virtual void draw(Screen&, /*...%*/) const = 0;
virtual void serialize(ByteStream&, /*...%*/) const = 0;
//

s

class Circle : public Shape

{

public:
void draw(Screen&, /*...*/) const override;
void serialize(ByteStream&, /*...%*/) const override;
//

s

A naive implementation of a Shape abstraction causes a lot of dependencies:

©

coupling to the type of arguments (Screen, ByteStream, ...);
coupling to a graphics library in the derived classes;
D
D

©

©

coupling to a serialization library in the derived classes;
coupling between orthogonal aspects (draw vs. serialization);

)

(3

©

The Many Choices of Design Patterns

Naive OO Solution

There are many solutions, ...

73

The Many Choices of Design Patterns

Naive OO Solution

... many design patterns to choose from ...

.. and so many important questions:

=21 “Which design pattern should | use?”

%) “What are the consequences of my choice?”
“What are the advantages?”

“What are the disadvantages?”

Luckily there is an answer ...

“The answer is,
it depends.”

() Episode #80 - the SOLID principles

2 |

e
4 \/

J

Phil Nash | =

/-

alal 2

b

-\
‘++ ‘++ ‘++ - +
++ {++ {++ |
(NN

-A-./
4 i
++ ++ ++ (: o

Watch on (3 YouTube

~—

+
+

AL
4

Reason 3:

Design patterns are simple!

Realization 3:

Design patterns are not simple!
Design patterns are difficult!

Software design is difficult, ...

... very difficult ...

... probably the most difficult part of
developing software.

So we need to talk about
dependencies and software design.

Of course some people talk about
software design:

Peter Muldoon Charley Bay Tony van Eerd Mike Shah

81

OREILLY

Design &

Design Principles \
and Patterns for .

Klaus Iglberger

www.oreilly.com

82

Best Sellers in C++

oy

2 Astage

C++ Programmieren: fiir Einsteiger: Der leich...
> Michael Bonacina

Yo fr e e oy 724

Paperback
€14.99

wWhiabeles

KOCHBUCH

UND

Mit sehr |

RATGEBER

XXL Diabetes Kochbuch und Ratgeber: mit se...
> Heinrich Stegmaier

Best Selle

I'S

Our most popular products based on sales. Updated hourly.

oy

_ALAN GRID

TROGRAMMIEREN
FUR ‘ABSOLUTE" ANFANGER_

Programmieren fiir Absolute Anfdnger: Der...
> Alan Grid

) & & & & '&:D

Paperback
€13.76

LEONIE WEINBERGER

GRAUBELN
STOPPEN

DAS EINFACHSTE UND
@ BESTE BUCH UM FREI VON
NEGATIVEN GEDANKEN 2U

® WERDEN UND DEIN GRUBELN
° % ZUSTOPPEN.
.

Griibeln stoppen: Wie du mit diesen erprobte...
> Leonie Weinberger

WA .

2y

AR
il

£ ipr. 3

COOKFORFUN

Wok Kochbuch XXL: Uber 222 Wok Rezepte ...

> Cookforfun

) & ¢ & & @KL

Paperback
€10.99

v 4

Object Lifetime
Puzzlers

128 FUN Puzzles of Increasing Difficulty With
One Simple Rule:

Object Lifetime Puzzlers - Book 1: 128 FUN...

»>Jason Turner

Yol e frofe 46 Yoo fefeofe 143 Yok ki fy 23
Paperback Paperback Paperback
€15.99 €13.90 €9.44
..... I
Ry -~ C#++ Software Copy and Reference A THINK LIKE \
4 Sctan oy St M‘,“Puzzlers Modern CMake vty =/

Design
{ ey e

P

in C++

&
‘m

) Hot New Releases

for C++

=3

#10

(7= O
Most Wished For

Exp|0~ring

in C++

CodeQuickly

L Y
KNrHRIICH

L
o 3]

kindleunlimited

BMU Verlag

2. Auflage

C++ Programmieren: fiir Einsteiger: Der leich...
> Michael Bonacina

Yo fe e ool 724

Kindle Edition
€9.99

Copy and Reference
Puzzlers

128 FUN Puzzles of Increasing Difficulty
Where You Must Ask:
or was it a reference, and who last changed
that value?

Copy and Reference Puzzlers - Book 1: 128 F...
> Jason Turner

Yok feoirir 4
Paperback
€9.51

Unreal Engine 4.x
Scripting with C++

>
o

Most Gifted

in C++

#12

83

Let’s talk about dependencies and
software design ...

... let’s talk about one of the most
controversial patterns ...

The Singleton
Pattern

.

The Singleton Pattern

Design Patterns

Elements of Reusable
Object-Oriented, Software

Erich Gamme
Richard Helnr
Ralph Johnsc
John Vlissides

Escher / Condon Art « Baarn - Holland. Al nights nesernved

-oreword by Grady Booch

>

p==
-
o’/
N
> £,
-
'
-
<
Vo'
<
e,
L
=
p—
W
—
—
>
"
~
—
P
—
o
o
—
7
A‘

S31A3S

86

The Singleton Pattern

“Ensure a class-has only one instance and
provide a 'global point of access to it.”

(The Gang of Four, Design Patterns - Elements of Reusable Object-
Oriented Software)

87

The Singleton Pattern

Singleton
static instance() O return uniquelnstance
singletonOperation()

getSingletonData()

static uniquelnstance
singletonData

Provides access to the one instance
of the Singleton

88

The Singleton Pattern

A common form of Singleton is the so-called Meyers’ Singleton:

class Database

{
public:
static Databaseé& instance()
{
static Database db; // The one, unique instance
return db;
I Effective (+
bool write(/* some arguments */); Thire Edition %
bool read(/* some arguments */); ou r A
scor N8
private: T :
Database() {} M
Database(Database consté&) = default; \ .
s

89

The Problems of Singletons

Most developers are not particularly
fond of Singletons ...

The Problems of Singletons

“Anytime you make something
accessible to every part of your
program, you’re asking for trouble.*

(Robert Nystrom, Game Programming Patterns)

91

The Problems of Singletons

S0 Singleton i1s usually considered
an anti-pattern. Why?

The Problems of Singletons

Singletons represent

Global State!

The Problems of Singletons

”The singleton pattern is one of the
mechanisms people use to make global
variables. In general, global variables are a
bad idea for a couple of reasons.”

(Michael Feathers, Working Effectively with
Legacy Code)

94

The Problems of Singletons

Global variables are a bad idea because ...

* ... they represent mutable state;

* ... read and write operations are difficult to control (especially in
multi-threaded environments);

» ... they are hard to reason about;

» ... they may be subject to the Static Initialization Order Fiasko (SIOF).

95

So the common advice is:

Don’t use
Singletons!

The Problems of Singletons

”Globals are bad, m’kay?”
(Guy Davidson, Beautiful C++)

-“' f
EALAN 0_2'”le’ rc,f
{RLEEY B :
ved 4l 4‘1061{9 ‘ﬁf,)
BN 4, . .
- —-~J’>

97

The Problems of Singletons

However, there are some intrinsically global aspects:

©

memory
time

the system-wide configuration

the audio or display device in computer games
the logger

© © ©® ©

©

98

The Problems of Singletons

“There are times when manually
passing around an object is gratuitous
or actively makes code harder to read.
Some systems, like logging or memory

management, shouldn’t be part of a
module’s public API.

(Robert Nystrom, Game Programming Patterns)

99

The Problems of Singletons

So it seems that sometimes
we need Singletons ...

But there is a bigger problem.

The Problems of Singletons

Singletons create dependencies!

¢ Dependencies on concrete implementation details
¢ Invisible dependencies
¢ Artificial dependencies

< Bad dependencies

101

The Problems of Singletons

Singletons make it difficult to
change, extend and test!

A Database Example

Let’s return to the Database example:

class Database

{
public:
static Database& instance()
{
static Database db; // The one, unique instance
return db;
H
bool write(/¥ some arguments */);
bool read(/¥ some arguments */);
private:

Database() {}
Database(Database consté&) = default;

}s

103

A Database Example: the Desired State ...

&sTL

class Database

{ .

public: ngh'level
static Database& instance();
/) (stable, low
bool write(/* some arguments */); dependencies)
bool read(/¥ some arguments */);

private:

Database() {}
Database(Database consté&) = default;

s
Architectural
Boundary
class Widget
{
public:
void doSomething(/*some arguments*/)
{
/] ...
Database: :instance().read(/*some arguments*/);
/] ...
3
s
Architectural
Boundary
class Gadget
{
public:
void doSomething(/*some arguments*/)
{
/] ...
Database: :instance().write(/*some arguments*/);
Low-level /] ...
(volatile, malleable, 3; }

high dependencies)

104

A Database Example: ... and the Real State

class Widget .
{ High-level
public:
void doSomething(/*some arguments*/) (stable, low
{ P dependencies)
Database: :instance().read(/*some arguments*/);
/] ...
X
s
Architectural
Boundary
o o class Gadget
{
['his is NOT
void doSomething(/*some arguments*/)
{
/] ...
h PY ' Database: :instance().write(/*some arguments*/);
/] ...
an architecture }
° }s
Architectural
Boundary

Low-level

(volatile, malleable,
high dependencies)

class Database

{
public:

static Database& instance();

/] ...

bool write(/* some arguments */);
bool read(/* some arguments */);

private:
Database() {}

15

Database(Database consté&) = default;

105

Because of these dependencies,
Singletons are always bad, right?

Singletons in the Standard Library

“..., it might be very surprising to learn
that there are a couple of “Singleton”-
like instances in the Standard Library.
Seriously! And, honestly, they work
fantastically!

(Klaus Iglberger, C++ Software Design)

107

An Example from the Standard Library

/] ...

#include <memory resource>

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!

return EXIT SUCCESS;
H

108

An Example from the Standard Library

/] ...

#include <memory resource>

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

return EXIT SUCCESS;
H

109

An Example from the Standard Library

//

#include <memory resource>

int main()
{
std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

std: :pmr: :vector<std: :pmr: :string> strings{ &buffer };

return EXIT SUCCESS;
H

110

An Example from the Standard Library

//

#include <memory resource>

int main()
{

std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

std: :pmr: :vector<std::pmr::string> strings{ &buffer };

strings.emplace_back("String longer than what SSO can handle"”);
strings.emplace _back("Another long string that goes beyond SSO0");
strings.emplace_back("A third long string that cannot be handled by SSO");
for(const auto& s : strings) {

std: :cout << std::quoted(s) << '\n';
}

return EXIT SUCCESS;

111

An Example from the Standard Library

//

#include <memory resource>
This acts as a Singleton!

int main()

{

std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

std: :pmr: :vector<std::pmr::string> strings{ &buffer };
strings.emplace_back("String longer than what 550 can handle”);

strings.emplace_back("Another long string that goes beyond S50");
strings.emplace_back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
X

return EXIT SUCCESS;

112

The Singleton Pattern

“"Ensure a class has onlyone instance and provide a global
point of access to it.”

(GOF)

113

cppreference.com Create account Search

Page Discussion View Edit History

C++ Utilities library Dynamic memory management

std::pmr::NUIl Memory resource

Defined in header <memory resource>
std: :pmr::memory resource* null memory resource() noexcept; (since C++17)

Returns a pointer to a memory resource that doesn't perform any allocation.

Return value

Returns a pointer p to a static storage duration object of a type derived from std: :pmr: :memory resource, with the
following properties:

eits allocate() function always throws std: :bad alloc;

»its deallocate() function has no effect; Global point of access,
for any memory_resource r, p->is_equal(r) returns &r == p . exact;ly one instance:
- : 2 p->15_equa’(r) y fulfills the definition
The same value is returned every time this function is called. of the Singleton pattern!

Example

The program demos the main usage of null memory resouce: ensure that a memory pool which requires memory
allocated on the stack will NOT allocate memory on the heap if it needs more memory.

Run this code

An Example from the Standard Library

Still, this represents a
/] ... =
#include <memory_resource> specific allocator, and
thus a dependency

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

std: :pmr: :vector<std::pmr::string> strings{ &buffer };
strings.emplace_back("String longer than what 550 can handle");

strings.emplace_back("Another long string that goes beyond S50")j;
strings.emplace _back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
H

return EXIT SUCCESS;

115

An Example from the Standard Library

//

#include <memory resource> Provides access to the system-wide

default allocator ...

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::get _default resource() };

std: :pmr: :vector<std::pmr::string> strings{ &buffer };
strings.emplace_back("String longer than what 550 can handle");

strings.emplace_back("Another long string that goes beyond S50")j;
strings.emplace _back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
H

return EXIT SUCCESS;

116

An Example from the Standard Library

/]
#include <memory resource> ... which can be set via
std: :pmr: :set _default resource()

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!
std: :pmr::set default resource(std::pmr::null _memory resource());

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::get _default resource() };

std: :pmr: :vector<std: :pmr::string> strings{ &buffer };

strings.emplace_back("String longer than what 5SSO can handle"™);
strings.emplace_back("Another long string that goes beyond S50")j;
strings.emplace _back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
H

return EXIT SUCCESS;

117

An Example from the Standard Library

/] ... This gives us the ability to

#include <memory resource>

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!
std: :pmr::set default resource(std::pmr::null _memory resource());

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::get _default resource() };

std: :pmr: :vector<std: :pmr::string> strings{ &buffer };

strings.emplace_back("String longer than what 5SSO can handle"™);
strings.emplace_back("Another long string that goes beyond S50")j;
strings.emplace _back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
H

return EXIT SUCCESS;

118

customize the system-wide allocator ...

An Example from the Standard Library

/] ... i ..
#include <memory Tesources ... 1n other words, we can inject the
dependency on the allocator ...

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!
std: :pmr::set default resource(std::pmr::null _memory resource());

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::get _default resource() };

std: :pmr: :vector<std: :pmr::string> strings{ &buffer };

strings.emplace_back("String longer than what 5SSO can handle"™);
strings.emplace_back("Another long string that goes beyond S50")j;
strings.emplace _back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
H

return EXIT SUCCESS;

119

An Example from the Standard Library

/]
#include <memory resource> Yes, this 1s.an example for the
Strategy design pattern!

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!
std: :pmr::set default resource(std::pmr::null _memory resource());

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::get _default resource() };

std: :pmr: :vector<std: :pmr::string> strings{ &buffer };

strings.emplace_back("String longer than what 5SSO can handle"™);
strings.emplace_back("Another long string that goes beyond S50")j;
strings.emplace _back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
H

return EXIT SUCCESS;

120

Repairing the Database Example

class Widget .
{ High-level
public:
void doSomething(/*some arguments*/) (stable, low
{) dependencies)
Datéﬁése::instance().read(/*¥some arguments¥*/);
/] ...
X
s
Architectural
Boundary
o o o class Gadget
{
What is missin
void doSomething(/*some arguments*/)
{
/] ...
PY b PY Database: :instance().write(/*some arguments*/);
/] ...
1S an abstraction)
000 };
Architectural
Boundary

class Database

{
public:

/] ...
bool write(/* some arguments */);
LOW-Ievel bool read(/* some arguments */);
] private:
(volatile, malleable, Database() {}
high dependencies) Database(Database consté&) = default;

15

static Database& instance();

121

Repairing the Database Example

//---- <Persistencelnterface.h> ----------------

class Persistencelnterface

{
public:
virtual ~Persistencelnterface() = default;
bool read(/*some arguments*/) const
{
return do _read(/*...%*/);
H
bool write(/*some arguments*/)
{
return do write(/*...*/);
H
// ... More database specific functionality
private:

virtual bool do read(/*some arguments*/) const = 0;
virtual bool do write(/*some arguments*/) = 0;

}5

122

Repairing the Database Example

//---- <Persistencelnterface.h> ----------------

class Persistencelnterface

{
//

private:
virtual bool do read(/*¥some arguments*/) const =
virtual bool do write(/*some arguments*/) = 0;

}5

//---- <Database.h> ----------------

class Database : public Persistencelnterface
{
public:

// ... Potentially access to data members

private:
bool do read(/*some arguments*/) const override;
bool do write(/*some arguments®*/) override;
// ... More database-specific functionality

// ... Potentially some data members

}5

0;

123

Repairing the Database Example

//---- <Persistencelnterface.h> ----------------

class Persistencelnterface

{
//

private:
virtual bool do read(/*some arguments*/) const = 0;
virtual bool do write(/*some arguments*/) = 0;

s

PersistencelInterface* get persistence_interface();
void set_persistence_interface(Persistencelnterface®* persistence);

124

Repairing the Database Example

//---- <Persistencelnterface.h> ----------------

class Persistencelnterface

{
//

private:
virtual bool do read(/*some arguments*/) const = 0;
virtual bool do write(/*some arguments*/) = 0;

s

PersistencelInterface* get persistence_interface();
void set_persistence_interface(Persistencelnterface®* persistence);

// Declaration of the one 'instance' variable
extern PersistencelInterface* instance;

125

Repairing the Database Example

//---- <Persistencelnterface.h> ----------------

class Persistencelnterface

{
//

private:
virtual bool do read(/*some arguments*/) const = 0;
virtual bool do write(/*some arguments*/) = 0;

s

PersistencelInterface* get persistence_interface();
void set_persistence_interface(Persistencelnterface®* persistence);

// Declaration of the one 'instance' variable
extern PersistencelInterface* instance;

//---- <PersistencelInterface.cpp> ----------------

#include <Database.h>

// Definition of the one 'instance' variable
Persistencelnterface* instance = nullptr;

Persistencelnterface® get persistence_interface()

{ 126

Repairing the Database Example

//---- <PersistencelInterface.cpp> ----------------

#include <Database.h>

// Definition of the one 'instance' variable
Persistencelnterface* instance = nullptr;

PersistenceInterface* get persistence interface()

{
if(!instance) {
static Database db;
instance = &db;
X
return instance;
H

void set persistence interface(Persistencelnterface* persistence)

{
¥

instance = persistence;

127

Repairing the Database Example

//---- <Persistencelnterface.cpp> ----------------

#include <Database.h>

// Definition of the one 'instance' variable
Persistencelnterface* instance = nullptr;

PersistenceInterface* get persistence interface()

{
// Local object, initialized by an 'Immediately Invoked Lambda Expression (IILE)'
static bool init = []J(){
if(!instance) {
static Database db;
instance = &db;
X
return true; // or false, as the actual value does not matter.
}(); // Note the '()' after the lambda expression. This invokes the Llambda.
return instance;
H

void set persistence interface(Persistencelnterface* persistence)

{
¥

instance = persistence;

128

Repairing the Database Example

High-level

(stable, low
dependencies)

class PersistencelInterface

{
public:
virtual ~Persistancelnterface() = default;
//
private:
virtual bool do _read(/* some arguments */) const;
virtual bool do write(/* some arguments */);
}s

This is dependency inversion (DIP) ~—

Low-level

(volatile, malleable,
high dependencies)

class Gadget

{
//
}5

class CustomPersistence

{
public:

//

private:

//
15

: public Persistencelnterface

bool do _read(/*...%*/) const override;
bool do write(/*...*/) override;

{
public:

/] ...
4—. private:
bool do write(/*...*/) override;

//
+5

class Database : public Persistencelnterface

bool do _read(/*...%*/) const override;

class Widget
{

/] ...
}s

No dependencies on the
Database class, i.e. on

the concrete implementation
details!

Architectural
Boundary

Architectural
Boundary

129

Repairing the Database Example

Dependency inversion (for instance via the Strategy design
pattern) is the necessary first step to an “acceptable” Singleton.

It is an “acceptable” singleton because ...

¢ ... user code no longer depends on one specific implementation;
¢ ... implementation details can be changed and extended;

¢ ... code using the Singleton can be tested;

¢ ... 1t enables you to cope with the intrinsically global aspects.

It’s still global, though, so take care!

130

The Service Locator Design Pattern

Patterns

Robert Nystrom

131

The Service Locator Design Pattern

“Prowde a global pomt of access to a service
l(\ sers to the\con rete class that

vy :
(Robert Nystrom Game Programmmg Patterns)

Game Programming

Patterns

Robert Nystrom

132

The Reality of Design Patterns

“Design patterns are everywhere.”
(Klaus Iglberger, C++ Software Design)

133

Summary

Software design is not an afterthought, but essential for the success of a project

Let’s stop pretending that C++ is all about features and standards
Let’s start to talk about the really important aspects of software

Design patterns are everywhere ...

¢ ...so learn about different patterns
... and their advantages and disadvantages

¢ Let’s make software easy to change, extend, and test, so let’s ...

134

Break
Dependencies!

The Path to
High-Quallq Soﬂware

| |
Klaus Iglberger, Closing KéS/note ‘k\eetmg C|++ 202?.[
"L klaus. 1glt]ergercﬂgn‘l}>[delr |. |
» | :
Y- -~ Sl] |

mailto:klaus.iglberger@gmx.de

